Search results for " dimensionality reduction"
showing 10 items of 17 documents
Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM
2019
Single-cell transcriptomic assays have enabled the de novo reconstruction of lineage differentiation trajectories, along with the characterization of cellular heterogeneity and state transitions. Several methods have been developed for reconstructing developmental trajectories from single-cell transcriptomic data, but efforts on analyzing single-cell epigenomic data and on trajectory visualization remain limited. Here we present STREAM, an interactive pipeline capable of disentangling and visualizing complex branching trajectories from both single-cell transcriptomic and epigenomic data. We have tested STREAM on several synthetic and real datasets generated with different single-cell techno…
Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery
2022
Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learni…
PRINCIPAL POLYNOMIAL ANALYSIS
2014
© 2014 World Scientific Publishing Company. This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by modeling the directions of maximal variance by means of curves instead of straight lines. Contrarily to previous approaches PPA reduces to performing simple univariate regressions which makes it computationally feasible and robust. Moreover PPA shows a number of interesting analytical properties. First PPA is a volume preserving map which in turn guarantees the existence of the inverse. Second such an inverse can be obtained…
A visualization technique for accessing solution pool in interactive methods of multiobjective optimization
2015
<pre>Interactive methods of <span>multiobjective</span> optimization repetitively derive <span>Pareto</span> optimal solutions based on decision maker's preference information and present the obtained solutions for his/her consideration. Some interactive methods save the obtained solutions into a solution pool and, at each iteration, allow the decision maker considering any of solutions obtained earlier. This feature contributes to the flexibility of exploring the <span>Pareto</span> optimal set and learning about the optimization problem. However, in the case of many objective functions, the accumulation of derived solutions makes accessing the sol…
Nonlinear data description with Principal Polynomial Analysis
2012
Principal Component Analysis (PCA) has been widely used for manifold description and dimensionality reduction. Performance of PCA is however hampered when data exhibits nonlinear feature relations. In this work, we propose a new framework for manifold learning based on the use of a sequence of Principal Polynomials that capture the eventually nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) is shown to generalize PCA. Unlike recently proposed nonlinear methods (e.g. spectral/kernel methods and projection pursuit techniques, neural networks), PPA features are easily interpretable and the method leads to a fully invertible transform, which is a desirable property…
Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization
2016
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…
Texture Classification with Generalized Fourier Descriptors in Dimensionality Reduction Context: An Overview Exploration
2008
In the context of texture classification, this article explores the capacity and the performance of some combinations of feature extraction, linear and nonlinear dimensionality reduction techniques and several kinds of classification methods. The performances are evaluated and compared in term of classification error. In order to test our texture classification protocol, the experiment carried out images from two different sources, the well known Brodatz database and our leaf texture images database.
Dimensionality reduction via regression on hyperspectral infrared sounding data
2014
This paper introduces a new method for dimensionality reduction via regression (DRR). The method generalizes Principal Component Analysis (PCA) in such a way that reduces the variance of the PCA scores. In order to do so, DRR relies on a deflationary process in which a non-linear regression reduces the redundancy between the PC scores. Unlike other nonlinear dimensionality reduction methods, DRR is easy to apply, it has out-of-sample extension, it is invertible, and the learned transformation is volume-preserving. These properties make the method useful for a wide range of applications, especially in very high dimensional data in general, and for hyperspectral image processing in particular…
Manifold Learning with High Dimensional Model Representations
2020
Manifold learning methods are very efficient methods for hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high input dimensional space and the (typically low) latent space is linear. This is a particularly strong assumption, especially when dealing with hyperspectral images due to the well-known nonlinear nature of the data. To address this problem, a manifold learning method based on High Dimensional Model Representation (HDMR) is proposed, which enables to present a nonlinear embedding function to p…
Semisupervised kernel orthonormalized partial least squares
2012
This paper presents a semisupervised kernel orthonormalized partial least squares (SS-KOPLS) algorithm for non-linear feature extraction. The proposed method finds projections that minimize the least squares regression error in Hilbert spaces and incorporates the wealth of unlabeled information to deal with small size labeled datasets. The method relies on combining a standard RBF kernel using labeled information, and a generative kernel learned by clustering all available data. The positive definiteness of the kernels is proven, and the structure and information content of the derived kernels is studied. The effectiveness of the proposed method is successfully illustrated in standard UCI d…